Evaluating Algebraic Expressions (A) Instructions: Evaluate each algebraic expression with the given values. $$m + 5q$$; where $m = 1$, and $q = 5$ $$(y - x)^3$$; where x = 1, and y = 3 $$q(p + 2)$$; where $p = 4$, and $q = 3$ $$y + y - x$$; where $x = 6$, and $y = 5$ $$(z + y) \div 6$$; where $y = 6$, and $z = 6$ $$h(j - h)$$; where $h = 3$, and $j = 6$ $$x + y + y$$; where $x = 5$, and $y = 2$ $$z^2 - y$$; where $y = 4$, and $z = 3$ $$b(4 + a)$$; where $a = 6$, and $b = 2$ $$m - n + m$$; where $m = 5$, and $n = 1$ $$(h + j) \div 6$$; where $h = 2$, and $j = 4$ ## Evaluating Algebraic Expressions (A) Answers Instructions: Evaluate each algebraic expression with the given values. $$m + 5q$$; where $m = 1$, and $q = 5$ $(y - x)^3$; where $x = 1$, and $y = 3$ $g(p + 2)$; where $p = 4$, and $q = 3$ $g(p + 2)$; where $g = 4$, and $g = 3$ $g(p + 2)$; where $g = 4$, and $g = 4$