Evaluating Algebraic Expressions (A)

Instructions: Evaluate each algebraic expression with the given values.

$$m + 5q$$
; where $m = 1$, and $q = 5$

$$(y - x)^3$$
; where x = 1, and y = 3

$$q(p + 2)$$
; where $p = 4$, and $q = 3$

$$y + y - x$$
; where $x = 6$, and $y = 5$

$$(z + y) \div 6$$
; where $y = 6$, and $z = 6$

$$h(j - h)$$
; where $h = 3$, and $j = 6$

$$x + y + y$$
; where $x = 5$, and $y = 2$

$$z^2 - y$$
; where $y = 4$, and $z = 3$

$$b(4 + a)$$
; where $a = 6$, and $b = 2$

$$m - n + m$$
; where $m = 5$, and $n = 1$

$$(h + j) \div 6$$
; where $h = 2$, and $j = 4$

Evaluating Algebraic Expressions (A) Answers

Instructions: Evaluate each algebraic expression with the given values.

$$m + 5q$$
; where $m = 1$, and $q = 5$
 $(y - x)^3$; where $x = 1$, and $y = 3$
 $g(p + 2)$; where $p = 4$, and $q = 3$
 $g(p + 2)$; where $g = 4$, and $g = 3$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$
 $g(p + 2)$; where $g = 4$, and $g = 4$