Line	The same	1000
Line	11/1/23/55	h debid

B-9

Name:	
-------	--

Efficiency of Simple Machines

Directions: Fill in the blanks. Use your text to help you.	
Throughout human history, people have tried to invent a ma	chine that could run forever.
This type of machine is called a (a)	but is impossible to build
because some of the energy put into the machine is transform	med into other forms of energy,
such as (b), which the machine	e cannot use.
The efficiency of a machine is a measure of the (c)	done by
the machine compared to the (d)	required to operate it. The work the
machine is designed to perform is called the (e)	A bicycle's useful
output work is its (f), whereas	the work done moving the pedals is the
(g)	
All machines experience the force of friction. Work energy into (h) Since extra w	
work done by friction, the useful output work is always (i)	
work. The more efficient a machine is, the less friction it has	m (4)
You can increase the efficiency of many machines b	by using a (j),
which allows surfaces that (k)	
(l) is an example of a good lul	
Unfortunately, no machine completely eliminates fr	riction; therefore, no machine is
(m) efficient. Efficiency can le	be calculated by dividing the useful
output work by the input work, then multiplying by (n)	
240 J of work into a machine and it does 90 J of work, the	efficiency of the machine is
(o)	

LM B-9 cont'd

A ramp is a simple	e machine that allows a small force	to be applied through a large distance.		
The input work for a ramp	o is calculated by multiplying the for	rce applied by the		
(p)	of the ramp. The useful outp	of the ramp. The useful output work is determined by the weight		
of the object pushed up the ramp multiplied by the (q)		of the ramp. If		
the force of 200 N is requ	ired to push a 500-N crate 10 m alor	ng a ramp to a vertical height of 3 m,		
the efficiency is (r)	%.	4		
.35				
Many machines ar	e quite inefficient. A conventional g	gas-powered car is		
(s)	% efficient, but an (t)	is twice as		
efficient. A (u)	, which converts	sunlight into electricity, is only		
(v)	% efficient.			
Incandescent light	bulbs are only (w)	% efficient because most of the		
electrical energy is transfo	ormed into (x)	Compact fluorescent light		
	ient because they operate at a (y)			